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of a Godunov-Type Scheme Based on Low 
Flow 

A single t ime scale, mul t ip le  space scale asymptot ic  analysis pro- 
vides detailed insight into the low Mach number l imit behavior of 
solutions of the compressible Euler equations. We use the asymptot- 
ics as a guideline for developing a low Mach number extension of 
an explicit higher order shock-capturing scheme. This semi-implicit 
scheme involves multiple pressure variables, large scale differenc- 
ing and averaging procedures that are discretized versions of stan- 
dard operations in multiple scales asymptotic analysis. Advection 
and acoustic wave propagation are discretized explicitly and upwind 
and only one scalar elliptic equation is to be solved implicitly at 
each t ime step. This equation is a pressure correction equation for 
incompressible flows when the Mach number is zero .  In the low 
Mach number limit, the t ime step is restricted by a Courant number 
based essentially on the maximum f low velocity. For moderate and 
large Mach numbers the scheme reduces to the underlying explicit 
higher order shock capturing algorithm. © 1995 Academic Press, Inc, 

1. INTRODUCTION 

One major motivation of this work derives from a range 
of interesting applications in combustion science. A typical 
example is the deflagration-to-detonation transition, where low 
speed combustion dominates the initial stages, while foreign- 
induced or self-induced flame acceleration eventually drives 
the flow into the fully compressible regime (see, e.g., [1] and 
the references therein). A direct numerical simulation scheme 
for these processes should efficiently and accurately deal with 
both the low and high Mach number flow regime. 

A considerable number of publications have been devoted 
to developing a computational method for low Mach number 
flows [2-10]. All of these methods are designed to avoid the 
Courant-Friedrich-Levy time step restriction for explicit 
schemes, which becomes extremely stringent for small Mach 
numbers due to the large discrepancy between the sound speed 
and a characteristic flow velocity. In the original governing 
equations one tries to separate terms that are associated with 
convection from others that become singular as the Mach num- 
ber M vanishes and which, in the limit, induce the well-known 
change of type of the governing equations from hyperbolic to 
hyperbolic/elliptic. Such a decomposition is by no means 
unique and several quite different approaches have been 
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adopted with varying success. One reason for the present work 
is that each of the schemes in the references cited fails to 
comply with at least one item from the following list of desirable 
features for applications in low Mach number combustion: 

- -  The scheme should allow for large amplitude density 
variations as M ~ O. 

- -  The split step containing the "st i ff"  terms, which is 
discretized implicitly, should be hyperbolic with a signal speed 
equal to the local speed of sound as M ~ 0. 

- -  Appropriate pressure variables should be defined that 
independently represent the global thermodynamic pressure and 
the pressure fluctuations induced by inertial forces and the 
divergence constraint in incompressible flows. 

- -  The scheme should accurately describe long wave 
acoustics associated with pressure amplitudes ~p/p~ = O(M). 

Ideally, the scheme would successfully simulate zero Mach 
number variable density flows, weakly nonlinear acoustic wave 
propagation at small but finite Mach numbers, and it should 
automatically turn into an explicit high resolution shock captur- 
ing scheme at high Mach numbers M = O(1). 

In this paper we consider the low Mach number asymptotic 
limit of the Euler equations and use the resulting insight as 
a guideline for designing a semi-implicit low Mach number 
extension of a Godunov-type MUSCL scheme for compressible 
flows [11, 12]. Since we develop a numerical scheme in conser- 
vation form, we use the conservative formulation of the Euler 
equations throughout the analysis. 

A wide range of particular distinguished limits for wave 
amplitudes and wave lengths, as well as length and time scales, 
can be relevant in the zero Mach number limit process, de- 
pending on the specific initial and boundary data (see Refs. 
[13-19], which we contrast with the present results in Section 
5). Here we consider a regime that is a relevant for the above- 
mentioned combustion applications with crucial acoustic wave 
effects: In a combustion device where a low-speed (turbulent) 
flame is the dominant driving force for the flow field, including 
entropy, vorticity, and acoustic fluctuations, the time scales of 
all the flow phenomena are dominated by the unsteady evolution 
of the flame front. A single time scale/multiple space scale 
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FIG. l . l .  Space-time diagram for the wave generation by an unsteady 
premixed flame. 

asymptotic analysis of the low Mach number limit is appropriate 
in this case. The situation is sketched in the space-time diagram 
of Fig. 1.1. Let t~cf be a characteristic time scale for fluctuations 
of the flame speed and let l~ and l,c denote the characteristic 
length scales of entropy perturbations and acoustic waves gener- 
ated by the flame, respectively. These length scales may be 
estimated as lx ~ Ureftref, I.c ~ Cr~rtr~r, where u~f is a characteristic 
flow velocity, comparable to the flame burning speed, and Cr~f 
is a reference speed of sound. Obviously, 1~ ~ MI.c, with 

M ~ ur~f <~ 1. ( l . l )  
Cref 

This type of flow can be analyzed by a single time, two space 
scale asymptotic analysis involving a reference time scale tr~r 
and length scales l,c and/r0r: = l~. 

1.1. Summary  o f  the Asymptotic  Analysis 

The analysis reveals several key features of the low Mach 
number limit process. First, it exhibits three physically distinct 
roles of " the"  pressure as 

(i) a thermodynamic variable, 

(ii) an acoustic wave amplitude, and 

(iii) the balancing agent for intertial forces in small scale 
flow structures guaranteeing compliance with a local diver- 
gence constraint. 

These "roles"  of the pressure have been discussed in earlier 
work [20, 13, 14], yet the present analysis is distinguished 
by the fact that all of the effects described above influence 
the velocity field at leading order and on a common time 
scale. In the present asymptotics, role (i) is played by the 
leading order pressure p(0j, role (ii) by the first-order pressure 
p"~, and role (iii) by the second-order pressure p~2~. For zero 
Mach number and for a fixed size of the flow domain, only 
p~2) retains spatial variation and it becomes "the pressure" 

of the incompressible flow equations satisfying the well- 
known Poisson equation (see [20, 14, 18] for formulations, 
including the influence of exothermic chemical reactions). 
We claim that a numerical scheme that is supposed to survive 
the passage to the limit M = 0 must allow for at least two 
independent pressure variables, namely the total pressure p 
and a field corresponding to pC2~, if the physical effects 
outlined above are to be represented appropriately. When 
acoustic waves with order O(M) pressure variation are im- 
portant, as in the present work, a suitable approximation of 
the first-order pressure p"~ needs to be introduced in addition. 
(Currently we extract this from p through certain summation 
procedures, but other alternatives involving an independent 
array in the numerical scheme can be thought of as well.) 

In the asymptotic analysis we use the conservative formula- 
tion of the governing equations whenever possible. An interest- 
ing aspect of this "asymptotics in conservation form" is the fact 
that the divergence constraint for the incompressible velocity 
field, V • v = 0, derives from the energy equation, but not from 
the continuity equation. In fact, the continuity equation becomes 
an advection equation for density fluctuations as M ~ 0. By 
incorporating this knowledge in the numerical scheme we ob- 
tain a method for low speed flows with large amplitude density 
variations, which is conceptually very close to Chorin's [21] 
projection method (see [22, 30] and Section 3 below). We 
emphasize that the projection step corresponds, in this context, 
to guaranteeing an energy balance, instead of mass conserva- 
tion, while solving the continuity equation allows one to intro- 
duce variable densities/entropies in a very natural way. 

Note that variable density capabilities are a necessary feature 
of a scheme for combustion simulations, since thermal expan- 
sions in a flame considerably change the density. Another im- 
portant aspect is that the leading order pressure becomes spatially 
homogeneous in the limit but may still change in time. In that 
case, global O( 1 ) pressure changes induce a nonzero flow diver- 
gence even as M---> 0. This feature is important for combustion 
in a closed vessel where global pressure changes are induced by 
the thermal expansion of the reacting gases [14, 18]. 

Besides multiple pressure variables and a density (and mo- 
mentum) advection mechanism, the scheme incorporates dis- 
crete versions of two important operations of multiple scales 
asymptotics. These are averages over small scale fluctuations 
and large scale differentiation. The former is needed, e.g., when 
the first-order long wave acoustic pressure p"~ is to be extracted 
at each time step from the full pressure, p = p~O~ + Mp,~ + 
M2p ~2~. We derive a summation formula that allows us to obtain 
p<~ from the discrete values of p without ever dividing by the 
Mach number. (Large scale differencing is the translation into 
a numerical discretization of the derivative with respect to a 
large scale variable in multiple scales asymptotics.) Let x denote 
the space variable resolving the small scale entropy (and vortical 
flow) structures and let ~ = Mx be the acoustic scale variable. 
Then, in a two-scale asymptotic analysis, any dependent vari- 
able, f (x ,  t; M) ,  is expanded as 



LOW MACH NUMBER GODUNOV SCHEME USING ASYMPTOTICS 215  

f(x, t; M)  = .f'°'(x, ~, t) + Mf"'(x, ~, t) + m2f'2'(x, ~, t) 

+ ' ' "  (~:=Mx). (1•2) 

A large scale derivative operator (0~).~., naturally appears in the 
asymptotic expansion of the governing equations, since 

0.~ ,'M = (O, + MOe)[f'"' + Mf '"  + M2.f °-' + "" "]. (1.3) 

Our scheme includes a discrete version of this operator. 

1.2. Description of  the Numerical Scheme 

The proposed numerical scheme is a Strang-type operator 
splitting technique applied to the following decomposition of 
the (nondimensionalized) Euler equations: 

System [. 

p, + (upL = 0, 

m, + (urn), = O, 

where m -~ pu, and 

System II. 

1 
m, + ~ p , =  0, 

/VI- 

e, + (Hm)~ = 0, 

where 

/ m-~\ e +/9 
p = ( y -  1 ) [ e - M  2 /  H =  (1.6) 

2p l '  p \ 

In (1.4)-(1.6) the quantities p, u, e, p, and H are the density, 
flow velocity, total energy per unit volume, pressure, and the 
total enthalpy per unit mass, respectively. All these quantities 
are nondimensional and scaled to be O(1) as M ~ 0. The 
details are given in (2.1)-(2.3) below. 

System I represents advection of density and momentum 
and, via terms involving ux, includes density changes due to 
acoustic waves and global background compression. A formal 
characteristic analysis of System II shows that it is hyperbolic 
with signal speeds 

1 
A~ = +_-=c + o¢1), 

M 

where c is the nondimensional speed of sound (with c = O(1) 
as M ~ 0). Thus, System II is responsible for the representation 
of fast acoustic wave propagation and it has the correct signal 
speeds to leading order in the Mach number. 

Beyond this quite formal characteristic argument, the asymp- 
totic analysis shows that System II describes, in fact, three 
physically quite distinct mechanisms, each of which deserves 
special attention in the numerical discretization: Mechanism 
number one involves global compression. Systems with charac- 
teristic dimensions comparable to lr~ are too small to accommo- 
date long wave acoustics• When a change of the system volume 
is imposed in that case, the rapid pressure equilibration leads 
to a quasi-homogeneous global pressure rise (see [23, 14, 16]). 
Unless high frequency solution components with time scales 
O(IrJcr~O are admitted, the pressure expansion is then missing 
an O(M) contribution, i.e., p = p'°~(t) + M2p'2~(x, t). Mechanism 
number two is the propagation of long wave acoustics. When 
the system dimensions are O ( I J M ) ,  there is no global pressure 
change on the time scale I JUror, but long wave acoustics involv- 
ing O(M) pressure perturbations are supported. In that case, 
System II describes these long wave acoustics and the appro- 
priate multiple length scale expansion scheme for the pressure 
reads p = Po + Mp't~(Mx, t) + M2p'Z'(x, Mx, t). The third 
mechanism is related to the divergence constraint, which plays 

(1.4) a role in both the regimes just mentioned. The second-order 
pressure p,2, in both cases describes a local balance of forces 
that is responsible for guaranteeing a side constraint on the 
divergence of the flow field. For zero Mach number when there 
is no global compression this constraint is V • v --- 0 and p'-" 
satisfies the well-known Poisson equation for "the pressure" 
in incompressible flows. 

(1.5) Guided by the asymptotics, the discretization of System II 
separately accounts for all these effects. The result is a scheme 
that combines explicit predictor steps for long wave linear 
acoustics or global compression with a single implicit scalar 
Poisson-type corrector scheme that takes care of both acoustic 
nonlinearities and the divergence constraint• 

Currently, we employ for System I a full explicit Godunov- 
type MUSCL scheme for compressible flows• It operates in a 
modified version to describe convection at low flow speeds and 
we switch to the original version for moderate and large Mach 
numbers. This scheme can be replaced in principle by any other 
shock capturing strategy. For System II we use LeVeque's large 
time step method [24] to describe the linearized long wave 
acoustics and simple central differences for the implicit O(M 2) 
pressure correction; the latter accounting for acoustic nonlinear- 
ities as well as the divergence constraint in the limit of vanishing 
Mach number. The order of accuracy of the scheme is O(M At, 
M ~c, (~.)2, (At)Z) for small Mach numbers in the semi-implicit 
version and it inherits second-order accuracy in space and time 
from the underlying Godunov-type MUSCL scheme for moder- 
ate and large Mach numbers. 

(1.7) 
We describe in this paper a one-dimensional version of this 

numerical method based on asymptotic considerations. The 
scheme has the following characteristics: 

(1) It is a semi-implicit operator splitting technique where 
the first step describes advection of mass and momentum and 
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the second step accounts for global background compression, 
long wave acoustic wave propagation, and the local balance 
of forces. 

(2) It involves two independent pressure variables that cor- 
respond to the full pressure p and to the second-order term, 
p121, in an asymptotic expansion p = p~O~ + Mpm + M2pa~ as 
M ---> 0. The first-order pressure pm is extracted when needed 
from p through suitable nonsingular summation procedures. 

(3) The spatial discretization includes large scale differenc- 
ing and averaging procedures that resemble corresponding stan- 
dard operations of multiple scales asymptotics. 

(4) For small but finite Mach numbers it treats convection 
and linear acoustic wave effects explicitly with an upwind 
discretization, while the local balance of forces and weakly 
nonlinear acoustic effects are accounted for in an implicit step. 

(5) The implicit step involves a single Poisson type equa- 
tion which, at zero Mach number, reduces to the pressure equa- 
tion of a projection method, [21]. 

(6) The scheme allows the passage to zero Mach number 
with a Mach number independent time step restriction. 

(7) For moderate and large Mach numbers the scheme be- 
comes a standard explicit higher order shock capturing scheme. 

(8) It is second-order accurate in space and time in the 
explicit Godunov-type mode and accurate of order O(M At, 
MAx, (Ax)2, (At)2) in the semi-implicit version for low 
Mach numbers. 

The organization of this paper is as follows: 
In Section 2 we discuss the single time/multiple space scale 

low Mach number asymptotics for the Euler equations in con- 
servation form and in multidimensions. In Section 3 we special- 
ize to a single space dimension and extract the specific subsets 
of equations that represent advection, acoustics, and the local 
divergence constraint. We interpret the results as a nonlocal 
decomposition of the Euler equations in the sense of the stan- 
dard operator splitting technique. For each subset of equations 
we introduce a specific discretization that accounts for its math- 
ematical character. In this fashion, we obtain a numerical 
method for the fu l l  Euler equat ions- -not  one for a set of simpli- 
fied limit equations. The role of the asymptotic analysis in this 
development is to help in designing a discretization that survives 
the passage to zero Mach number (rather than to provide a 
simplified equation set). In Section 4 we present results for 
several test problems that document the performance of the 
scheme in different Mach number regimes. The examples con- 
sidered include weakly nonlinear acoustic effects and pressure 
wave interactions at M ~- 0.1, the passage of a long wave 
acoustic pulse over a short wave, large amplitude density lay- 
ering at M ~- 0.02 and the flow in an open tube with imposed 
large amplitude global compression and large spatial density 
variations at M ~-. 10 -4. In Section 5 we provide a brief report 
on existing literature in the field and contrast it with the present 

work. Section 5.1 reviews the low Mach number asymptotics, 
while Section 5.2 compares various numerical techniques for 
low Mach number flows with our new approach. 

2. LOW MACH NUMBER ASYMPTOTICS FOR THE 
EULER EQUATIONS IN CONSERVATION FORM 

2.1. Summary 

Here we analyze the compressible Euler equations, which in 
nondimensional form and for one, two, or three dimensions read 

p , + V . m = 0  

( 1) 
m , + V .  m o v + ~ . p !  = 0  

e, + V ' (v [e  + p ] )  = 0, 

(2.1) 

where p, m, and e, are the conserved quantities, namely mass, 
momentum, and total energy per unit volume, v - m / p  is the 
flow velocity, p the pressure, I denotes the unit tensor and the 
o symbol indicates the tensorial product. The pressure is related 
to the conserved variables through the equation of state of a 
perfect gas, 

r 1 m 2 ] 
P = ( 3 ' -  1 ) / e -  M 2 ~ p . j  with 3"=const.  (2.2) 

L 

To obtain (2.1), (2.2) we have used a nondimensional notation 
by defining 

! t 
P = P /Pref 

! ! 
/.) = V / b / r e  f 

D ! t 
P - P /Pref 

x = x ' / l~f  

t ! t 
t = t //ref//ref, 

(2.3) 

where primes denote dimensional quantities. Note that we use 
a reference velocity, u~ef independent , , ~/2 of (PrJP~f) • This choice 
guarantees that the nondimensional velocity, v, remains well 
defined and of order O(1) in the limit of a vanishing Mach 
number 

t 
U r e f  

M - + O. (2.4) 
( p ' J p ' O  la 

We emphasize that M is a global parameter characterizing the 
nondimensionalization but not the local flow Mach number. 
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Also time is nondimensionalized by a characteristic flow time 
sca le - -no t  by a characteristic time for sound wave propagation. 

We analyze the behavior of specific solutions of (2.1) which, 
for small Mach numbers M "~ 1, have an expansion 

U(x, t; M) = U ~°~ + MU ~u + M-'U ~'-~ + o(M2), (2.5) 

V" (v[e + p]) in the energy equation. Together with the above 
constraints on the pressure gradient, this term introduces the 
global divergence condition 

1 dPo 
Vx" v ~°~ . . . . .  ( 2 . 8 )  

TPo dt" 

where U denotes the vector of  the unknowns. Note that particu- 
larly the pressure has a nonzero first-order contribution, Mp% 
By including O(M) pressure perturbations, we allow acoustic 
waves to affect the velocity field at the leading order. To our 
knowledge this regime has not before been analyzed in more 
than one space dimension and in the context of  the zero Mach 
number, (quasi-)incompressible limit. 

Each of the expansion functions in (2.5) depends on two 
space variables, i.e., 

(Note that the right-hand side depends on time only !) For incom- 
pressible flows, when there is no global compression, one has 
V~- v ~°~ = 0. These two terms have been identified before in a 
characteristic analysis by Casulli and Greenspan [3]. 

We will then discuss the principal role of the continuity 
equation. One finds 

1 dPo 
pl, O~ + vlO,. V~p~O~ - (2.9) 

YPo dt 

U °~ = O°~(x, ~, t), where ~: = Mx. (2.6) 

Here x resolves small scale entropy fluctuations and vortical 
structures, while ~¢ is an acoustic scale variable. We do not 
carry out a multiple time scale analysis involving time variables 
t and ~" = Mt, since we are interested only in translating the 
asymptotic behavior on the shortest time scale into a numerical 
scheme. The scheme will then resolve this short time scale and 
the numerical solution should automatically accumulate long 
time effects. 

In this section we explore the consequences of the ansatz in 
(2.5). We use no more and no less than identification of terms 
multiplied by the same powers of  the Mach number and aver- 
ages over the smallest scales in order to extract important insight 
into the behavior of  solutions upon passage to the limit M 
0. Throughout the analysis we assume that these averages exist 
when needed. We are aware that this is a highly nontrivial 
assumption, but the idea is to use the insight obtained from 
this analysis to design a new conservative discretization of the 
full governing equations. Thus, we do not rely on a numerical 
solution of the asymptotic limit equations and we may hope 
that the resulting algorithm will be able to also handle more 
general situations, where these averages do not necessarily exist 
in an asymptotic sense. Their discrete analogues certainly exist 
in any case, since they merely involve certain summation proce- 
dures over finite subsets of  the domain of integration. 

Here we summarize the principal results of  the asymptotics 
before we go into details in Section 2.2. First we will identify 
those two expressions in the governing equations that are re- 
sponsible for the degeneration from a hyperbolic to an elliptic/ 
hyperbolic system as the Mach number vanishes. The first term 
is the pressure gradient, (1/M 2) Vp, in the momentum equation, 
which induces Vxp I°) = V~p ~°) = Vxp °~ = O, so that 

This equation describes how each mass element is advected 
along its particle path while being isentropically compressed 
or expanded when there is a global leading over pressure varia- 
tion. In particular, each mass element may have an individual 
initial density corresponding to a nontrivial initial entropy distri- 
bution. Thus, the asymptotics includes variable density flows 
in a natural way. Incidentally, the continuity equation does not 
yield the divergence-free condition in the present conserva- 
tive formulation. 

Finally, the asymptotic analysis of the second-order momen- 
tum and first-order energy equations shows that 

(1) the second-order pressure p~2~ reduces to the standard 
pressure variable for incompressible flows that satisfies the 
well-known Poisson equation as M --~ 0 and that 

(2) the first-order pressure P ~  appears as an acoustic wave 
amplitude, which under certain restrictions satisfies the linear- 
ized, nonconstant coefficient wave equation 

PI~ ) - Vg" (Kg(~) VgP (')) = O, (2.10) 

where the signal velocity c0 = (TPo/-Pt°~((~)) is slowly varying 
on the time scale considered, with P0 from (2.7) and ~i0~ the 
small-scale average of the leading order density distribution. 

2.2. Asymptotic Expansions, Averaging Procedures, and 
Interpretations 

Here we describe the hierarchy of perturbation equations that 
follows from the asymptotic expansion in (2.5). We selectively 
present only those equations that will be relevant in the further 
procedure of designing a numerical scheme. We do not attempt 
in this paper to systematically solve the asymptotic system. 

The leading order continuity equation reads 

prO) _= Po(t), ptU _-- plll(~, t). (2.7) pl °~ + Vx" (vC°~p I°~) = O. (2.11) 

The second singular term is the enthalpy flux divergence The leading, f i rs t-and second-order momentum equations are 
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Vxp t°~ = 0, 

Vxp IIJ + V~p ~°~ = 0, 

ml °~ + V~. (m~°~o ¢ °~) + V~p ~21 = - V ~ p  °), 

and the set of energy equations is 

(2.12) 

(2.16) yields an integral constraint on the normal velocities 
along O V. In both cases (2.15), together with (2.16) represents 
a second equation that exhibits a nontrivial change of type of 
the governing equations: The flow divergence Vx. v ~°~ is either 
determined by the volume flux across the boundary at any 
time, i.e., 

el °~ + V~. (vh) (°~ = O, 

e~ w~ + Vx. (vh) ") = - V ~ .  (vh) ~°~, 

e~ 2) q-  ~7 x • (vh) ~-'1 = - V  s • (vh) °~, 

(2.13) 

where h = e + p = pH is the total enthalpy per unit volume. 
The first two equations in (2.12) are the first to indicate the 

change of type of the governing equations upon transition from 
the compressible to the incompressible regime. These equations 
do not involve a time derivative, so that they are of elliptic type. 
In an asymptotic approach, one first concludes from (2.12)] 
that pt0) = pt0)(s¢ ' t). Then the x-average of (2.12)2, with the 
requirement of sublinear growth of p"~ as ]x[ becomes large, 
yields 

ptO~ = P o ( t ) ,  

pO, = ptl)(~, t). 
(2.14) 

Considering next the leading order energy equation (2.13)t, 
thereby taking into account (2.14)j and the equation of state 
(2.2), one finds that 

1 dPo 
Vx" v ~°' - (2.15) 

"YP0 dt 

Vx.v,O,__ ± f  ,,,0, V 3~v  • n do- ,  (2.17) 

or it is imposed from the outside by O(1) pressure changes on 
the boundary. In that case the right-hand side of (2.15) is 
explicitly prescribed. 

In the second regime for characteristic system dimensions 
the system is large compared to Ir'er and the acoustic scale 
variable s~carries nontrivial information. Then the volume aver- 
age with respect to x of (2.15) yields 

1 dPo 
0 = (2.18) 

YPo d t '  

and P0 is invariant on the time scale considered. On the other 
hand, inserting (2.18) back into (2.15) one finds the small-scale 
divergence constraint 

V~" v ~°~ = 0. (2.19) 

It seems remarkable that in the present formulation of the 
asymptotics h7 consepvationform, the divergence condition for 
incompressible flows follows from the energy equation but not 
from the continuity of mass. In fact, the continuity equation 
(2.11) plays a quite different role. It may be rewritten as 

We discuss two very different, yet equally important regimes 
and draw conclusions from (2.15). In the first regime, we as- 
sume that the overall system dimensions are comparable to the 
reference length l ' f  from (2.3). Then we have a single-length 
scale solution and the large scale variable £ becomes void. 
Detailed analyses of this regime including also the influence 
of exothermic chemical reactions are given in [14, 18]. Equation 
(2.15) may then be integrated with respect to x to yield 

d In p~/~ 1 c 10~ 
d t  = ~," Joy v • n do- ,  (2.16) 

where V denotes the volume, OV is the boundary of the physical 
domain considered, and n is the outer unit normal on OV. If 
the normal velocity v t°). n is known from boundary conditions 
all along OV, then this equation yields the overall pressure rise 
due to compression from the boundaries. A typical example 
for this kind of situation is a closed piston-cylinder system, 
where the piston motion determines the global pressure rise. 
If, on the other hand, the pressure is imposed at least on part 
of the boundary, then, due to spatial homogeneity of P0, Eq. 

pl °~ + v ~°~" V~ pC0) = _pt0~ V~" v t°l. (2.20) 

In the first scenario this equation yields 

D In p(0) 1 d In P0 D 
Dt "y dt ' where ~ 0t + v t°~'Vx, (2.21) 

which is the equation for quasi-static adiabatic compression of 
mass elements along particle paths. This result indicates that 
Po(t) operates as a thermodynamic pressure variable as an- 
nounced in the Introduction. In the second scenario with multi- 
ple length scales, where Vx" v (°1 --- 0, Eq. (2.21) simply describes 
the advection of the leading order density distribution. 

Consider next the second-order momentum equation, (2.12)3. 
Again we distinguish the two scenarios mentioned above. For 
the single length scale case the right-hand side vanishes identi- 
cally and one obtains the standard momentum equation for zero 
Mach number flows [20, 14], 

ml °) d'-  Vx" ((re°v) I°) -'1- p(2)I) = 0. (2.22) 
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The second-order pressure pl2~ then must be the balance-of- 
forces agent that ensures compliance with the divergence con- 
straint (2.15). 

The situation becomes more involved in the multiple length 
scale regime. Then the term V~P"  is present in the momentum 
balance and its effect needs to be studied. We separate the small- 
sale and acoustic scale balance of forces by volume averaging 
(2.12)3 over x. This yields 

(pv)l°~ + V~P t ' =  0, (2.23) 

yPo 
Co(g) - Po(g) (2.31) 

is the relevant average speed of sound. If one allows for O(1) 
variations of the leading order density on the small reference 
length scale, the interesting result is that the system of linearized 
acoustics is not retrieved automatically. With the separation of 
p~0~, v~O~ into x-scale fluctuations and g-scale averages ac- 
cording to 

where the overbar denotes the small-scale average. To see the 
physics of this equation we combine (2.23) with the small- 
scale average of the first-order energy equation (2.13)2. Taking 
into account that 

#o,  = ~O,(x ' g, t) + ~,0,(g) 

¢o,  = ¢,0,(x ' g,  t )  + v~°~(g, t ) ,  
(2.32) 

1 
e I°~ = Po, (2.24) 

y - 1  

one has 

we find that (2.33) 

PI I~+yPOVg'W00=0, where v ~ = v  t°~. (2.25) 

Consider now a flow that has O(1) density variation only on 
the acoustic scale, so that 

p~O, _= po(g, t). (2.26) 

Then the small scale average of equation (2.20) yields 

p0., -= 0, (2.27) 

saying that N can vary only on time scales much longer than 
the reference time tr',t = l'du[~r. Indeed, since the density distri- 
bution is mainly advected by the flow, nontrivial changes of 
Po can occur only when mass elements have passed O(l ' f /M)  
distances, i.e., over times of order t ' f /M. Using (2.26), (2.27), 
one obtains 

(pv)l °' = ~o(g)V~.,0., (2.28) 

for the time-dependence term in (2.23). Equations (2.25)-(2.28) 
yield the system of nonconstant coefficient linearized acoustics, 

v0.--S + (l/po(g)) V~P "~ = 0, 

PI I) + TPo V~- ~ = O. 

This system yields the wave equation for P"), 

Pl.,, -- V~" (c02(g) V~ pro) = 0, (2.30) 

where 

and the second term yields a nontrivial contribution. A numeri- 
cal scheme that is supposed to handle this kind of situation 
must carefully account for this additional term. However, in 
this paper we will only outline the design of a numerical method 
for a single space dimension, in which case ~,0~ -- 0. This result 
will be discussed in more detail in the next section. 

This finishes the analysis of Eqs. (2.11 ) through (2.13), except 
for a discussion of the second-order energy equation (2.13)3. 
We observe that this equation accounts for weakly nonlinear 
effects through the asymptotic representation of the enthalpy 
flux contributions (vh) t~, (vh) '2' and due to the fact that e t2' 
includes the quadratically nonlinear kinetic energy term ac- 
cording to (2.2). We use this aspect in the numerical scheme 
in that we approximate the long wave acoustics by a linear 
explicit large time step predictor and capture weakly nonlinear 
effects successfully by a careful formulation of the implicit 
pressure correction equation that yields the numerical second- 
order pressure. We demonstrate the performance of the scheme 
on problems of weakly nonlinear acoustics in Section 4. 

Even though it is quite tempting we resist at this point the 
challenge to go one step further in the multiple-scales asymptot- 
ics and derive evolution equations for all variables on the larger 
~" = Mt time scale. This analysis would definitely be of interest 
in itself, but it would dilute our main argument. As stated in 
the introduction to this section we intend to use the single-time 
scale, multiple space scale equations of this section in order to 
derive a new numerical scheme that in detail resolves the 
t 'r-time scale. By incorporating a discretization of the full  equa- 
t i o n s - n o t  the asymptotic limit equations--we hope to obtain a 
scheme that automatically generates the long time accumulation 
effects that in an asymptotic analysis would be described by 
the 7-scale equations. 
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3. OPERATOR SPLITTING AND DISCRETIZATION IN 
ONE SPACE DIMENSION 

Based on the asymptotic analysis of the last section we can 
now motivate the operator splitting into a convection system 
for mass and momentum: 

System I. 

p , + ( u p L = O ,  

m , + ( u m ) ~ = O ,  
(3.1) 

where u = m/p, and a combined momentum/energy balance 
that simultaneously describes (i) the local balance of forces 
that ensures compliance with the divergence constraint in the 
zero Mach number limit and (ii) either long wave acoustics 
with the correct signal speeds +--c/M as M ~ 0 or a global 
compression in systems that are too small to accommodate long 
wave acoustic pulses. 

System II. 

1 
m, + -:;-g.~ p,  = 0, 

M -  

e, + (Hm)x = O. 

(3.2) 

System I should be discretized explicitly and in an upwind 
fashion. System II should be discretized by a semi-implicit 
scheme in order to account for its mixed hyperbolic/elliptic 
character which results from the two submechanisms mentioned 
above. To allow the passage to zero Mach number we have to 
introduce separate pressure variables according to the asymp- 
totic expansion p = ptO)+ Mp(~) + M2p~2j as discussed in the 
previous section. Two additional requirements are imposed. 
First, the discretization of System I should be a suitable modi- 
fied version of an explicit compressible flow solver to which 
the whole scheme reduces for sufficiently large Mach numbers. 
Second, the semi-implicit discretization of System II should 
minimize the damping of long wave acoustics while still 
allowing large time steps with Courant numbers CFL = O(1/ 
M) as M--* 0. 

3.1. Averaging Procedures and Multiple 
Pressure Variables 

Here we discuss the discrete large scale averaging procedures 
that we use to extract the long wave acoustic components of the 
solution at every time step and that define the formal pressure 
decomposition in terms of powers of the Mach number. 

First we introduce the spatial averaging operator 

x+AI* I 
= e fx a,~f(x )dx',  (f)~.~(x) ~ _ (3.3) 

which is characterized by two parameters A ~ 1 and e ~ 1. 
Then we define numerical acoustic and super-acoustic scale 
averages by 

f(x) = (f)±~n~t(x), 

f (x )  = (f)a,n~4'-(x). 
(3.4) 

When the averaging domain in these expressions exceeds a 
given fraction of the numerical domain of integration, the local- 
ized averages are replaced by averages over all of the computa- 
tional domain. This will be the case for the super-acoustic scale 
averages in all of the examples in Section 4. 

Next we introduce three pressure variables ~(o), ~,~, ~2), which 
closely correspond to the asymptotic pressure expansion func- 
tions of Section 2, by 

p(0) = ~, 

1 

p¢2~ = 1 _ ~,o, 
M-'- 5 (p - M-fill). 

(3.5) 

Obviously, we have 

p = ,~o) + ~pI,~ + M2pl2). (3.6) 

With this decomposition of the pressure the equation of state 
in (2.2), when specialized for one space dimension, becomes 

e = e (°) + Me ") + M2e (21 

= - - + M  + M  2 + . 
y - 1  y - 1  - 1  

Note that in computing ~") by, say, the trapezoidal rule the 
factors of 1/M from (3.5)2 and M = e from the definition of 
the average (.)M.~n cancel and we obtain the first-order pressure 
without ever having to divide by the Mach number. An analo- 
gous formula does not exist for if2), so that the formula in 
(3.5)3 cannot be used for values of M 2 comparable to machine 
accuracy. The quantity M2ff 21, however, is available and will 
be used in the numerical discretization. 

3.2. Convection o f  Mass and Momentum 

The scheme used here to discretize System I from (3.1) is 
admittedly not the most efficient one, but it does have the 
desired feature that it is equivalent to a full explicit Euler solver 
as the Mach number exceeds a prechosen threshold value. In 
case that all flows to be simulated are in the low Mach number 
regime a specialized more efficient method should be employed 
[22, 30]. 
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We motivate the design of the scheme by a characteristic 
analysis of the auxiliary 

System I*. 

p, + (upL = O, 

m, + (tlm)x + Px = O, 

e, + (u[e + ~NL + MZP])x = O, 

(3.8) 

the semi-implicit to the fully explicit mode, thereby shifting the 
task of solving the energy balance from the implicit to the 
explicit step. We plan to address this issue in more detail in 
future work. 

Incidentally, System I* remains hyperbolic with signal 
speeds 

h*. "~ = u +- e ( M ) c ,  (3.12) 

where for any function e(M) = o(1) as M ~ 0, if one replaces 

PNc = ~ - M'-p (3.9) p., with (e'-/MZ)p~ (3.13) 

is a nonlocal pressure contribution considered to be given and 
fixed in the following characteristic analysis of (3.8). 

Note that the factor of 1 [ M  2 multiplying the pressure gradient 
in the momentum equation in (2.1) is missing in the auxiliary 
system (3.8). Therefore (3.8) is a modification of System I in 
(3.1) rather than being close to the one-dimensional version of 
the original Euler equations from (2.1). 

System I* is hyperbolic with signal speeds 

E p -  ~ / f  
A ~ = u ~ c .  w l t h c ~ =  - - ,  (3.10) 

Ep 

where E(p, p) is the thermal energy per unit mass of gas defined 
by E = e/p - M2u212 (see also Appendix 1.1). Note that 
both u and c .  are nondimensional and O(1) as M --~ 0. As 
a consequence, 

h~ = 0(1) as M---~O. (3.11) 

In Appendix I we present a Godunov-type discretization of 
System I* based on the Harten, Lax, van Leer, Einfeldt approach 
[25, 26]. The scheme automatically solves the original Euler 
equations for M = 1, since in that case ~ ~ p according to the 
definition in (3.5). 

The fluxes of mass and momentum for System I* are highly 
accurate approximations of the fluxes for the target system I 
in (3.1), provided that the scaling assumptions for spatial varia- 
tions of the pressure outlined in (2.5), (2.6), and (2.14) are 
satisfied. In that case the fluxes are accurate except for an 
O(M 2) contribution from the pressure gradient in the momentum 
equation. We introduce a correction to this error in the implicit 
second step of the scheme. 

The discretization of System I* also yields approximate en- 
thalpy fluxes. In all of the computations presented in Section 
4 we have simply neglected this information and solved the 
energy equation completely in the second semi-implicit step. 
An area of problems where the enthalpy fluxes for System I* 
should be used are transition problems, where the Mach number 
continuously increases and the solution leaves the low Mach 
number regime. The scheme should then smoothly transfer from 

in the momentum equation and 

(u[e + pN, + M2P]), with (u[e + ~ L  + e2pl)~ (3.14) 

in the energy equation, where 

~L = ~  - e2p. (3.15) 

This argument may be important for a multidimensional exten- 
sion of the scheme, where e(M) = M u and d is the number 
of space dimensions. Note that a similar argument has also 
been used with success in [27] to derive a semi-implicit Roe- 
type scheme [28] for the Euler equations. 

3.3. Explicit Predictor for  Linearized Acoustics and Global 
Compression 

We solve System II in two steps. First we assess the effects 
of global compression or long wave acoustics in an explicit 
predictor step and then we complete the discretization by an 
implicit pressure correction. The key new idea as compared to 
standard pressure correction schemes (see, e.g., [2, 4]) is to let 
this explicit predictor provide all changes of the pressure to 
orders O(At) and/or O(M At), so that the implicit correction 
step only needs to account for higher order O(M'- At) pressure 
contributions due to weak acoustic nonlinearities and the local 
force balance guaranteeing compliance with the divergence 
constraint. In this fashion we obtain a scheme that allows large 
time steps of order O(1/M) as M ~ 0 but nevertheless shows 
very low damping for long wave acoustics. We describe the 
explicit predictions in the present subsection and the implicit 
scheme for the second order pressure in the next. 

To assess the influence of long wave acoustics in case that 
the system dimensions are of order O(l~f/M) we compute pre- 
liminary time updates of an averaged momentum and of the 
first-order pressure tim for each numerical cell by applying an 
explicit large time step method to the linear acoustic system 

_ , where ~ = M x .  (3.16) 
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Note that this system is hyperbolic with signal speeds c/M in 
the x,t-space, so that a suitable large time step discretization 
is needed to overcome the Courant-Friedrich-Levy condition 
for standard explicit schemes. To prepare for this discretization, 
we first generate suitable initial data ~j  for the averaged momen- 
tum in each cell from the density, velocity, and pressure data 
at the current time level. Several possibilities for this procedure 
can be thought of and have been tested. The most satisfactory 
results have been obtained by defining 

~j,  = {~(p + Mfi("/c2)}~, (3.17) 

where 2/, ~, and ~ are simple acoustic and super-acoustic scale 
averages and 

c 2 = y~°~/~. (3.18) 

The O(M) contribution in the estimate of the density in (3.17) 
accounts for isentropic density changes due to the long wave 
acoustics associated with fi('. 

The linear acoustic predictor involves time steps of O(At) 
for the system in (3.16) independent of the Mach number. Thus, 
within a time step an acoustic wave travels distances in ~,t- 
space of order ~(e~ = 0(7 At) ~ Ax, which corresponds to 
distances in x,t-space of order ,~(~ ~ Ax/M. Thus, a wave 
passes about 1/M numerical cells of size Ax during a time step. 
We note that the system in (3.16) is linear, so that acoustic 
information may be distributed among the cells by simple super- 
position. LeVeque [24] proposes a large time step method for 
hyperbolic systems which elegantly combines conservation 
with a characteristic-type discretization. The key idea is to solve 
the local linearized Riemann problems at cell interfaces as in 
a standard Godunov type scheme, but to distribute the resulting 
jump discontinuities over the complete domain of influence of 
the local Riemann problem. In this way a wave generated at a 
cell interface may traverse several numerical grid ceils in the 
neighborhood in one time step and the Courant-Friedrich-Levy 
time step restriction is avoided. A disadvantage of the method 
is that nonlinear wave interactions are neglected during a 
time step. 

Here we are in the fortunate position that the system in (3.16) 
is in fact linear, so that the superposition principle holds exactly. 
Currently we use a first-order version of LeVeque's method 
which we describe in Appendix II. We are aware that this 
method does not easily transfer to more than one dimension 
and we are concentrating on deriving a suitable similarly simple, 
yet easily multi-D extendable scheme in our current work. 

The results of the linear acoustic predictor are preliminary 
updates of energy and momentum 

_ M __~,  a m j .  
aej = Maej ') Y 1 6pj , (3.19a) 

tation of the second-order pressure as described in the next sub- 
section. 

In (2.15)-(2.19) we discussed a single length scale regime 
where the characteristic lengths of acoustic waves would exceed 
the system dimensions considerably. An outer imposed pressure 
change or a global compression due to a change of volume of 
a closed system could, in this case, induce leading order changes 
of the total energy, while there would be no large scale pressure 
gradients contributing to the flow acceleration. In that case ~e~ 
and ~ j  are replaced with 

& j  &j0, 1 =c0) . . . .  6pj , a~j=-- 0, (3.19b) 
y 1 

with 8 ~  °~ computed using (2.16) and velocity boundary data 
or directly the imposed boundary pressure if applicable. 

3.4. Implicit O(M 2) Pressure Correction 

In this step we account for the effect on the momentum 
of the small scale pressure gradient fi!?) and we obtain final 
O(M z) corrections for the time update of the total energy. 
The effects of the small scale pressure gradient on the 
momentum ensure compliance with a divergence constraint 
in the zero Mach number limit, while the O(M'-) energy 
updates, associated with changes o f p  (z) and of the momentum, 
are weakly nonlinear corrections to the linear acoustic predic- 
tion discussed in the previous subsection. Formally, we solve 
the system 

m, + (pl-,i _ P)x = 0, 

M2el 2' + (uh)x = -e7 xpl, 
(3.20) 

over one time step, where an approximation to (eT~¢)j is known 
from previous calculations as & J A t  and el '-) includes the above- 
mentioned changes of the second-order pressure as well as of 
the kinetic energy. Note the appearance of -Px in (3.20), 
which corrects the error introduced in the convection step by 
replacing the System I from (3.1) with the System I* from 
(3.8). 

We will now summarize the implicit discretization of (3.20) 
and append important remarks and theoretical considerations 
at the end of this subsection. In the following the superscripts 
0 and ' denote state variables before and after application of the 
solution operator for System II, respectively. The * -superscript 
denotes the preliminary half-time updates 

p~* = p~, 

m ?  = m ° + ~-a-~j, (3.21) 

These are separately stored and then used in the implicit compu- e* = e ° + ~-&j 
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of the conserved quantities with &j and fi~r from (3.19) and with -~ . . . .  ,/2 .... j+,/2 from (3.24h. This yields an implicit nonlinear 
we will further use the derived quantities equation for (p)2)),: 

hi* = e* + pO + ~(y _ 1) tie r. (3.22) 

Note that the density is unaffected by System II. This justifies 
the notation in (3.21), and implies that p) =- po. The conserva- 
tive time update for System II now reads 

m) - m ° = 6mr - ~ '  . . . .  ,,2 . . . .  - , ,_, ,  • t k - r + l / 2  "j-112J, 

e) - e ° = tie r - A((m"+lnH*)j+ln - (m"+mH*)r-l/2), 
(3.23) 

where A = At lAx  and 

.,v.+112 = ~ p ) 2 )  4- p j2) , ) l  _ ½(Pr 4- p r + l )  °, - j + l / 2  

H~+,,2 = (h*  + h*+,)l(p* +/9,+,), 

n+l/2 ~' n+l/2 mj+l/2 = ~ m *  + m*+l) + omr+l/2, 

. ~  n+l/2 o m r +  m = - A ( ( p } ~ ) l  - -  p}2)) l  _ ( p r +  i - -  p f lO) .  

(3.24) 

Here the second-order pressure (pj2))l from the new time level 
appears and before the update (3.23) can be evaluated this 
quantity is to be solved for. Note that the update for System 
II is conservation form, provided 8e r and 8Nj are computed in 
a conservative fashion. This is the case for our code, as it uses 
LeVeque 's  [24] method. 

In deriving a closed form equation for (p}-'))', we need to 
take into account that changes of  both p(Z) and m contribute to 
the energy e to order O(M2). Thus, we insert 

e) - e ° = 8ej + M 2 8e}'-' (3.25) 

with 

~e} 2) = _ _  
1 ( ( p j 2 , ) , _ ( p } 2 , ) o ) + l ( ( ~ ) ~ _ ( m ' - I °  I 

3' 1 2 \ P /  /r 
(3.26) 

into (3.23)2, thereby approximating the change of kinetic en- 
ergy by 

( , (_,) i . Hr÷m(p,+,) - HrS.,p_ + H*_,,,_ + A2(~-- ~ (p}-~')' 

M 2 
+ * 12) 1 ~ekin,j .  Hr_m(pr_l) = R* + 

(3.29) 

Here the quantity R*,  which collects all the explicit informa- 
tion, is given by 

M2 
R* - A-'('y - 1) (p}Z,)O + ~e r 

+ I ((H*lii)j+,n - (H*lfi)r-w_) (3.30) 

'fis+,n = ~(m* + mr*,) + A((pr+, - pflO). 

The (weak) nonlinearity enters through the kinetic energy term 
on the r.h.s, of  (3.28). It is efficient to account for this term 
by straightforward iteration. The convergence is the faster the 
smaller the Mach number. The iteration (iteration counter " v " )  
starts with ~0 &ki,.j = 0. The linearized equation (3.28) is solved 
and, given the uth iteration (p}~?0 ~''' for the second-order pres- 
sure, the kinetic energy term is updated using (3.27) and (3.24)3.4 
with (p}2)), replaced with (p}2))~.,.. 

This concludes the presentation of our low Mach number 
discretization except for the following few theoretical com- 
ments and a discussion of boundary conditions. We defer the 
latter issue to Section 4, where we explain the boundary condi- 
tions in conjunction with the specific test problems. 

We remark that: 

(i) Equation (3.23) contains an adverse pressure gradient 
term via (pj+, - pj)0. This term is introduced to correct the 
artificial pressure term in the advection scheme for mass and 
momentum in the auxiliary System I* (see (3.8)2). 

(ii) For zero Mach number (3.29) reads 

( p ) . ~ ) , ) , . -  ,2),, [p) ) (p}2) ) ,  _ (p}22,),  

o°+, + / + p %  

+ 1  1 
~ ~--~ 6p, 

1 
= ~ ( g r + , , z  - 1 7 j _ , , , )  ( 3 . 3 1 )  

l ( ( ~ - ~ ) ' - ( m 2 / ° )  = 1 [(m° 
&k~..j ------ ~ \ n / /r 2---~ 

where 

+ 6mj*) 2 - (mO)Z], 

(3.27) 

~m* = ~(c3m~'++,~ 2 + 8m)'-+,~z2) + 8~ j  (3.28) 

where ~p -- (3/ - l ) &  r is the spatially homogeneous back- 
ground pressure change and ffr÷m = 2rfij+m/(P°+m + po). To 
arrive at this equation we have used the fact that, in the limit 
of  M = 0 and for fixed size of  the computational domain on 
the convective length scale, the pressure becomes spatially 
homogeneous. It follows that also the enthalpies h* approach 
y~ / (y  - 1) and hence become constant in space. 

As discussed above, the replacement of System I by System 
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I* to describe the effects of  convection will guarantee a nonsin- 
gular behavior of  that part of  the scheme as the Mach number 
is set to zero. The results in the next section indicate that the 
convection of density and momentum is in fact approximated 
with high accuracy by this method. 

Equation (3.31) is the pressure equation of a projection 
method. The (second order) pressure p~-'~ is adjusted so as 
to correct any error in the flow divergence that may have 
been introduced during the convection step. In formulating 
this equation the divergence is expressed here through differ- 
ences of  the cell interface velocities tTj+l;2. References [22, 
29] provide a more detailed analysis of  the zero Mach number 
limit for discretizations of  the compressible flow equations 
in the context of  the present approach using low Mach number 
asymptotic analyses in designing the numerical scheme. The 
authors show that a numerical scheme that does not rely on 
multiple pressure variables, but only knows the thermody- 
namic pressure field p, must  fail in the incompressible limit. 
The appropriate implicit pressure equation in that case reduces 
to the Laplace equation with constant boundary data, so that 
the unique solution is the trivial spatially homogeneous one. 
Consequently, such a scheme must rely on subtle differences 
of large numbers to describe the pressure fluctuations that 
in the incompressible limit guarantee the divergence condition 
and it is impossible to pass to the limit. (See also Section 
5.2 below.) 

The reader interested in particular in modern high-accuracy 
finite difference techniques for the numerical treatment of  the 
zero Mach number limit equations (for reacting and nonreacting 
flows) should also refer to the overview and research paper by 
Colella [30]. 

4. RESULTS 

In this section we demonstrate the performance of our scheme 
on three test problems. Each test focuses on a particular 
feature of  solutions of the Euler equations for small Mach 
numbers. 

In Case I we test the scheme on a problem of colliding 
acoustic pulses in a regime (M ~ 0.1), where weakly nonlinear 
wave deformation is important. Case II demonstrates that large 
amplitude, short wave length density fluctuations are properly 
advected with very low dissipation at M ~ 0.02, while at the 
same time a (weakly nonlinear) longwave acoustic wave train 
passes the density layering. Case III shows numerical results 
for extremely low Mach numbers (M ~ 10-4). Again we show 
proper advection of a nontrivial density structure and, in addi- 
tion, the influence of a large amplitude background pressure 
variation. 

In all tests the time step is consistently limited by sta- 
bility constraints for the explicit advection step as discussed in 
connection with (3.8)-(3.11). In dimensional notation we 
have 

At'  
- -  <-- (u'  + M c ' )  -] .  
Ax '  

As a consequence the effective CFL-numbers for tests I, II, Ill 
are CFLt --~ 5, CFLu --~ 22, CFLt t  I ~ 0 .5  X 10 4, while M~ --~ 
0.1, Mt] --~ 0.02, MH] --~ 10 -4. For cases I, II we test the accuracy 
of the scheme by comparison with numerical solutions obtained 
with the explicit second-order MUSCL version of the code. 
For case III we compare with the leading order asymptotic 
solution for M --~ 0. 

In all tests we consider an ideal gas with constant specific 
heats and an isentropic exponent y = 1.4. 

Case I. M = ~ The initial data for this test case are 

p(x, 0) = P0 + MP~ I} ~(1.0 - cos(21rx/L)) 

p(x, O) = rio + Ml~o li 12-(1.0 - cos(27rx/L)) 

u(x, 0) = sign(x)ff0 ~ 1.0 - cos(2rrx/L)) 

(4.1) 

for - L  -< x ~ L = 2/M, where 

p0 = 0.955,fi0 = 1.0, 

and 

p~} = 2.0,p'~ '~ = 27, tT0 = 2 ~ .  (4.1a) 

We prescribe periodic boundary conditions which in the 
present case are equivalent to reflecting (rigid wall-) bound- 
aries due to the symmetry in the initial data. The data from 
(4.1) approximate two acoustic pulses, one right-running pulse 
in - L  --< x ----- 0, and an antisymmetric left-running pulse 
in 0 -< x --- L. The following numerical computations use 
220 grid points within the interval from (4.1). Figures 4.1a, 
b show the pressure distributions at times t = 0.815 and 
t = 1.63. The initial data are also included for completeness. 
In Fig. 4.1a the pressure pulses have just collided and 
their super-position produces the maximum pressure of  the 
computation. For comparison the figure shows the distributions 
obtained with the semi-implicit and with the second-order 
explicit scheme. The curves can hardly be distinguished. In 
Fig. 4.1b the pressure pulses have separated again. Weakly 
nonlinear acoustic effects have considerably distorted the 
profiles and weak shock formation is incipient. The solutions 
practically coincide in all of  the domain, except for the 
vicinities of  the locations x ~ - 1 8 . 5  and x ~ 18.5, where 
shocks are beginning to form. In these regions the quality 
of  the semi-implicit solution begins to deteriorate. This is 
not surprising, since we have built the scheme under the 
assumption of long wave acoustic solution components and 
this assumption is being violated in Fig. 4. lb.  The deviations 
are due to the fact that we extract the first- and second- 
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order pressures from the discrete pressure distribution by 
means of averaging procedures that involve O(I /M)  grid- 
points. In the vicinity of a developing discontinuity this 
produces an undesired smearing of the solution. We note 
that the scheme nevertheless does not produce spurious 
high-frequency oscillations. Several ways to improve the 
performance of the scheme on weak shock problems are 
currently being tested. 

Figures 4.2a, b display the density distributions for Case 
I at the same times as mentioned before. The comparison 
with the solutions from the explicit scheme is as satisfactory 
as it was for the pressure. This is not trivial, since in the 
semi-implicit algorithm the density evolution is done by a 
completely different scheme than the pressure wave propaga- 
tion. These results indicate that the interaction of these 
subschemes via Strang-type operator splitting produces the 
correct advection of the density when the flow is driven by 
acoustic waves. 

A comparison of the computational efficiencies of the explicit 
and the semi-implicit calculations is given at the end of this 
section. 

Case II. M = ~ The initial data for this test case are 

p(x, O) = Po + dP(x)~ °~ sin(4OTrx/L) 

+ M~#o'~(1.O + cos(Trx/L)) 

p(x, O) =-rio + MP~'~(1.0 + cos(Trx/L)) 
(4.2) 

u(x, 0) = tT0~(1.0 + cos(rrx/L)) 

for - L  ~ x --< L = 1/M, with density coefficients 

Po = 1.0, Po = 0.5, (4.2a) 

and the other parameters as in (4.1a). The function ~(x) in 
(4.2), is defined by {0! 

• (x) = 1.0 - cos(5rrx/L)), 

- 1 /L<_x<_O,  

0 --< x --< 2L/5, 

x > 2L/5, 

(4.2b) 
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and smoothly restricts the large amplitude short wave length 
density fluctuations represented by ~0 to a region with length 
2L/5 to the right of the origin. This case operates with periodic 
boundary conditions. 

The data from (4.2) represent a large amplitude, short wave 
length density layering that is set in motion by a periodic 
train of long wave right-running acoustic pulses. The numerical 
solution uses 1020 grid points within the interval from (4.2), 
which corresponds to about 25 gridpoints within a half-period 
of the small scale density layering. 

Figures 4.3a, b and 4.4a, b show the pressure, velocity, and 
density distributions at time t = 5.071 after about two and a 
half turn-arounds of the long acoustic wave, together with the 
initial data. Again we have included the solutions from the 
explicit and from the semi-implicit schemes. First we observe 
from the pressure distribution in Fig. 4.3a that again the weakly 
nonlinear acoustic wave is described equally well by both 
schemes. The key aspect, however, of this example is the advec- 
tion of the density profile due to the recurring interaction with 
the acoustic wave. The theoretical prediction is that the density 
fluctuation amplitude should be preserved in the process and 

that only small amplitude long wave variations should occur 
due to the adiabatic compression as the acoustic wave passes 
by. Besides this, the density layering should just move to the 
right, driven by the cumulative influence of the acoustic pulses. 
In Fig. 4.4a we observe that the semi-implicit scheme has quite 
accurately preserved the density fluctuation amplitudes over 
189 time steps. We have used the Superbee limiter [28] to 
achieve these results. The explicit scheme, run with the same 
limiter, does not perform as well as is seen in Fig. 4.4b. This 
is due to the fact that the explicit scheme requires 4086 time 
steps to reach the same physical time and the small but nonzero 
dissipation of the scheme accumulates to reduce the total density 
variation by a factor of one-half. 

Another aspect of this example is that at the location of the 
density fluctuations O(M 2) pressure variations occur when the 
acoustic wave passes by. These are accompanied by first-order 
fluctuations of the velocity as displayed in Fig. 4.3b. The small 
amplitude pressure variations are more clearly visible in the 
close-up view of the pressure distribution in the interval 0 -< 
x <-- 20 in Fig. 4.5a. The explicit and semi-implicit computations 
show similar small amplitude variations, but due to the O(1) 
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discrepancy between the densities, we cannot expect that the 
two pressure calculations coincide precisely. It is important to 
note that these O(M 2) pressure variations must be obtained in 
the explicit calculation by delicate differences of  O(1) pressure 
data, while in the semi-implicit computation we compute sepa- 
rately the O(M2)-pressure/7 a~, which resolves such small pres- 
sure variations consistently as M ~ 0. Figure 4.5b displays/~2~ 
at the same time t = 5.071, and we recognize its rapid variation 
at the location of  the large density gradients. 

A comparison of  the computational efficiencies of  the explicit 
and the semi-implicit calculations is given at the end of  this 
section. 

Case III. M = 10 -4. Here we consider the flow in an open 
tube, where mass with a given time dependent density is induced 
at the left end at a prescribed time dependent velocity. At the 
right end we prescribe a time dependent outflow pressure with 
large amplitude variation. Thus the initial and boundary condi- 
tions for this example read 

(p, u, p)(x, 0) = (1.0, 1.0, 1.0), (4.3a) 

p(O, t) = 1.0 + 0.3 * sin(4.0 * t) 

u(O, t) = 1.0 + 0.5 * sin(2.0 * t) 

p(L, t) = 1.0 + 0.25 * sin(3.0 * t) 

(4.3b) 

with L = 10.0. The Mach number for this example is M = 10 -4 
and the effective Courant number for the numerical solution is 
CFL --~ 0.5 X 104. We resolve the computational domain by 
100 grid points and, as a consequence, no long-wave acoustics 
with O(lref/M) wave length can exist within the domain and 
the acoustic predictor for the implicit solution step is simply 
switched off. However, we do allow for a large amplitude 
background pressure variation as described in conjunction with 
(3.19b). Specifically, to provide a prediction for the total energy 
variation 8ei during the time step when entering the implicit 
step, we let 

+ ' '  

", / -  1 \ - ~ - /  ' (4.4) 

and wherepr(t) = p(L, t). This term enters the second-order pressure 
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, numerical 

Poisson-type equation as a source term and it automatically 
generates the ff2)-gradients needed to establish the flow diver- 
gence associated with the background compression. We de- 
scribe the numerical treatment of the boundary conditions for 
this test problem in Appendix III. 

Figures 4.6a, b and 4.7a, b show the second-order pressure, 
the flow velocity, and the density profiles at times t = 6.56 
and 7.47 for this example. The limit solution as M --~ 0 for 
this problem has been included for comparison. It can be com- 
puted by noting that ux, due to (2.15) is a function of time only 
in one space dimension, which is prescribed when p(L, t) from 
(4.3b) is inserted for P0 (see the discussion below (2.16) in 
Section 2). Therefore the velocity is a linear function of x with 
given time dependent slope and boundary value at x = 0. 
According to (2.21) material elements undergo a quasi-static 
adiabatic compression and expansion while they follow the 
particle paths described by u(x, t). With this, the leading order 
density and velocity and the leading and first-order pressure 
are known and we only need to determine the second-order 
pressurep t2). The latter follows from (2.12)3 by a straightforward 

integration with respect to x in one space dimension. (The 
details are given in [31].) 

We find very satisfactory agreement in all the profiles. In 
particular, the density distributions Figs. 4.6a, b show that mass- 
elements after entering the domain at the left end of the tube 
are correctly compressed and expanded in their further evolu- 
tion. The global compression is clearly identified by the differ- 
ent density levels of the plateaus in the right half of the computa- 
tional domain at the successive output times. 

Computational Efficiencies. We summarize the effective 
computation times (for an HP 9000/735 workstation) and 
the numbers of time steps needed in the calculations for 
Cases I, II in Table I. We find that the key goal in developing 
a low-to-zero Mach number version of a compressible flow 
solver is achieved. The ratio of the numbers of time steps 
needed in an explicit computation versus that required in a 
semi-implicit run scales as 1/M for M ~ 0. Due to the 
overhead of the semi-implicit scheme in comparison to the 
explicit version, the ratio of effective CPU times does not 
come out as favorably. The break-even point for the current 



LOW MACH NUMBER GODUNOV SCHEME USING ASYMPTOTICS 229 

a) 

1.055 

1.050 

1.045 

1.040 

b) 
0 . 6 -  

0 .4 -  

0 .2 -  

0 .0 -  

-0.2 - 

-0.4 - 

Pexpl 

I I I I 
5 10 15 20 

X 

( 2 )  
P t--5.071 

• . . : :  
., . . . . . "  \ 

\ 

I I i I 
-40 -20 0 20 40 

x 

FIG.  4.5. Details of the pressure distributions for the acoustic wave/densi ty  layer problem from (4.2) with Mach number M = 0.02 at time t = 5.071. (a) 

full pressure profiles in the vicinity of the density layering: - - - .  semi-implici t  scheme (CFL --~ 22); , explicit  MUSCL scheme (CFL = 0.8); 
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version of the code and for one space dimension seems to 
occur at a Mach number of about M = 0.1. For Case II, 
where M = 0.02, the gain in computation time amounts to 
a factor of 4. This does not appear to be worth the effort 
in the first place, yet, we emphasize that: 

(i) The semi-implicit computation, in addition to being 
faster, yields higher accuracy of the density profiles. 

(ii) The current version of the semi-implicit scheme is 
not yet optimized for efficiency. The acoustic predictor based 
on LeVeque's large time step method is quite costly, due 
to the fact that during one time step each computational cell 
has to communicate with about 1/M neighbors. In fact, the 
estimates given in the table indicate that the acoustic predictor 
uses about 50% of the CPU time in the calculation for Case 
II. Promising, more efficient alternatives appear to be, [29], 

- -  an implicit scheme based on the Crank-Nicholson dis- 
cretization, 

- -  a spectral method, or 

- -  a physically motivated multigrid approach that de- 
scribes the long wave solution components on a coarser grid. 

(iii) Also, we reiterate that the solution scheme for System 
I (convection of mass and momentum) used here is a modified 
full compressible Euler solver, which takes about 34% of the 
CPU time in Case II. The goal here was to embed such a 
scheme in the overall code so that a reliable operation for 
large Mach numbers, i.e., fully compressible flows, would be 
guaranteed. If computational efficiency has the highest priority, 
one would switch to an algorithm optimized in that respect for 
sufficiently small Mach numbers. 

(iv) The semi-implicit computations for Cases I, II were 
not performed with a time step near the stability limit of 
the scheme. In fact, a further extension of the time steps 
by a factor of 2 is possible, albeit with the cost of reduced 
accuracy. In that case, the computations take just about 12 
and the w
(If ) Tj
8.64 0 TD
ed in cost reduced 
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5. REPORT ON EXISTING LITERATURE 

5.1. Multiple Scales--Low Mach Number Asymptotics 

There is a wide range of different distinguished regimes for 
low Mach number asymptotics and each regime is distinguished 
by different physical mechanisms. Here we briefly sketch the 
key scaling assumptions and the most prominent results of a 
number of earlier publications and we contrast them with the 
present asymptotic analysis from Section 2. 

Ebin [32], by an approach using operator theory, and Klainer- 
man and Majda [13], using classical energy estimates, prove 
that low Mach number flows are close to incompressible flows 
when suitable restrictions are imposed on the initial (and bound- 
ary) conditions (see also the further references in these papers). 
They show that weakly compressible flows of a barotropic fluid 
(P = P(O)) in fact converge to a limiting incompressible flow 
as the Mach number vanishes, if 

1. the flow field is divergence-free initially, except for per- 
turbations that vanish as M ~ 0, 

2. the pressure is uniform initially except for perturbations 
of O(M2), and 

3. a single characteristic length scale governs the initial 
data. 

Besides proving convergence, Klainerman and Majda show 
that higher order perturbations, under the restrictions in 1-3 
above and for some finite time on the convective time scale, 
are governed by a hierarchy of nonconstant coefficient, nonho- 
mogeneous linearized acoustic equations. These perturbations, 
in particular, include rapid oscillations associated with the pas- 
sage of acoustic waves over the convective length scales. In 
addition, they successfully analyze viscous flows with the same 
methodology for vanishing Math number. 

When pressure fluctuations of O(M) are present initially, i.e., 
when the second constraint above is relaxed, convergence to 
an incompressible flow as M ~ 0 is not proven. However, a 
uniform stability estimate was given by Klainerman and Majda 
[13], showing that a classical differentiable solution of the 
compressible flow equation exists for some finite time interval. 



a) 

1.6 

1.4 

1 .2 -  

1 . 0 -  

0.8- 

O .  

LOW MACH NUMBER GODUNOV SCHEME USING ASYMPTOTICS 231 

b) 

I I I I I 

2 4 6 8 I0 

1 t 1.2 

o .  1 . o  . . . . . . . . . . . . . . . . . . .  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .  ; ;  . . . . . . . . . . . . . . . . .  

0.8 00°° oo 

0.6 
I I I I I I 

0 2 4 6 8 10 

FIG. 4.7. Density distributions for the open tube problem with global compression from (4.3) with Mach number M --~ 10-~: O, semi-implicit scheme 
(CFL ~-- 0.5 - 10~); , exact leading order asymptotic solution for M ~ 0. (a) time t = 6.56; (b) time t = 7.47 

This classical solution is characterized by bounded velocities, 
pressure fluctuations no larger than O(M), accelerations of  order 
O(I/M), and time changes of  pressure of  O(1). These bounds 
correlate with the intuitive expectations that single length scale 
initial data including O(M) pressure variations will (i) produce 
acoustic perturbations that affect the velocity at leading order 

TABLE I 

Comparison of Computational Efficiencies for Explicit and Semi- 
implicit Calculations on an HP 9000/735 Workstation, Including a 
Separate Count of the Percentage of CPU Time Used by the Several 
Split Operators in the Semi-implicit Computations 

Case Scheme Time steps CPU - secs. % cony. % acou. % impl. 

I Expl. 128 0.58 I00 
Semi-impl. 25 0.52 48.4 24.8 26.8 

II Expl. 4084 83.15 100 
Semi-impl. 188 22.86 34.0 49.5 16.5 

(so that a proof of  convergence to the incompressible limit is 
not available) and (ii) generate rapid acoustic oscillations of  
the velocity corresponding to the acceleration estimate Iv,I = 
0(1/M) as M --~ 0. 

The assumption of  a barotropic fluid, where a direct relation 
p = p(p) between pressure and density exists, restricts the 
analysis to constant-entropy data and the limiting case is con- 
stant density incompressible flow. As mentioned before, large 
amplitude density fluctuations are crucial for an accurate de- 
scription of  reacting flows. Schochet [33] extends several of  
the results of  Klainerman and Majda in this respect and shows 
convergence of  weakly compressible to incompressible variable 
density flows under similar restrictions on the initial data as 
stated in 1 - 3  above. (For a summary of  existing theoretical 
results and further recent developments cf. [17].) 

Majda and Sethian [14] and Majda and Lamb [18] perform 
a formal asymptotic analysis of reactive low Mach number 
flows. They derive a simplified set of  equations for "zero Mach 
number combustion," which is the appropriate generalization 
of  the equations of incompressible nonreacting flows. As in the 
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studies before, pressure fluctuations are bounded to be O(M 2) 
as M ~ 0 with the consequence that acoustic effects are absent 
from the set of leading order equations. For rigorous results 
concerning well-posedness and short-time existence of these 
limit equations see Embid [34, 35]. 

A somewhat different approach has been chosen in a se- 
quence of papers by Kreiss [36] and Tadmor [37]. Their funda- 
mental notion is that in many applications one is not interested 
in high-frequency effects, but rather in the long time evolution 
of a system. For fluid mechanics this means to suppress rapid 
acoustic oscillations and to focus on the underlying quasi- 
incompressible flow. The goal in these studies is to derive 
constraints on the initial data that would guarantee the absence 
of high frequency solution components to some prechosen high 
perturbation order. The questions of whether these conditions 
can be met with some probability in reality and under which 
conditions the high frequency components--if  present--would 
nontrivially affect the leading order solution structure remain 
open. The present assumption of long wave acoustic solution 
components for Cases I and II in Section 4 represents a way 
of "preparing the initial data" by imposing a particular multiple 
length scale structure that has not been considered previously. 

All the analyses discussed so far assumed that the characteris- 
tic spatial scale of solutions is independent of the Mach number 
as M ~ 0. The consequence is that under the assumption of a 
single evolution time scale for the leading order flow, acoustic 
effects can be allowed only as higher order corrections. For cer- 
tain applications in combustion, in particular explosion processes 
that start with slow burning and then continuously accelerate to 
become fully compressible, this restriction is unacceptable. It is 
in fact the acoustics generated by the combustion heat release 
which is responsible for the flow acceleration. This was the moti- 
vation for the present analysis in Section 2. Here long wave 
acoustics with pressure wave amplitudes of O(M) and leading 
order velocity contributions are allowed for. The long wave as- 
sumption guarantees that there is still only one governing charac- 
teristic time scale for all the processes involved. 

A quite different regime is considered by Hunter et al. [15] 
(see also references therein), in which detailed effects of weakly 
nonlinear acoustics are prominent. A multiple time-multiple 
length scale analysis is performed that reveals weakly nonlinear 
acoustic wave deformation and resonant interactions of high 
frequency acoustics with entropy as well as vorticity perturba- 
tions. The basic underlying assumptions on the multiple scales 
structure of the solutions are as follows: On the shortest length 
scale--borrowing from the theory of geometrical optics--the 
solutions are composed of interacting quasi-one-dimensional 
wave fronts. A set of scalar phase functions 0j(x, t), varying 
only on the larger length scale, is introduced and the short wave 
length structure of the solution is associated with level sets of 
these phase functions: 

o'.(Oj(x't),x,t)r_i(x,t). (5.1) u(x, t ;M) = u0 + ~ j \  

The tangent vectors £j(x, t) in state space represent entropy, 
vorticity, and acoustic modes. Rapid variation occurs according 
to (5.1) only normal to level surfaces 0j = const., while the 
variation of the wave amplitude o-j in the tangential direction 
is slow. The result of this ansatz is a theory of multidimensional 
high frequency interactions of locally quasi-one-dimensional 
waves. (For further studies of this asymptotic regime, also in 
the context of combustion applications see [38, 39, 16, 40].) 
The scaling assumptions in this ansatz differ considerably from 
those considered in Section 2. Here we do allow for a quite 
general small scale solution structure that is not restricted to a 
superposition of quasi-one-dimensional modes, yet we only 
consider long wave acoustics with wave lengths asymptotically 
large, compared to the scales of the underlying quasi-incom- 
pressible flow. 

We finally mention the very interesting work of Weinan 
E [19], whose length scaling is effectively the same as that 
considered here. The author considers large amplitude multiple 
length scale data for compressible flows in one space dimension. 
He shows that high frequency large amplitude acoustic modes 
will rapidly decay due to shock formation and the associated 
dissipation. One is then left with a multiple scales solution 
structure, where large amplitude density (entropy) fluctuations 
persist, while the inherently compressible acoustic contributions 
are either long wave or small amplitude. The author then derives 
new effective evolution equations for both the underlying small 
scale structure and the long wave-large amplitude gasdy- 
namics. He obtains and rigorously justifies homogenized effec- 
tive equations for the large scale flow that resembles the stan- 
dard gasdynamics equations, yet with a homogenized entropy 
function that depends on the small scale solution structure. 
Since the author is interested in large amplitude effects, the 
question of the low Mach number limit behavior is not ad- 
dressed, but since he does introduce the same spatial scaling 
assumptions as we have introduced in Section 2, a comparison 
and unification of both analyses seems very worthwhile. 

5.2. Review of Numerical Approaches to the Low Mach 
Number Problem 

Here we discuss approaches to solving the full compressible 
flow equations in the low Mach number regime. Thus, we do 
not address the wide range of publications proposing numerical 
schemes for the zero Mach number limit system, in which truly 
compressible effects are essentially suppressed, while density 
changes are still allowed. Nonetheless, this literature will be 
of utmost importance in our further work, as it contains a vast 
amount of analyses and experience in the design of higher order 
accurate schemes simulating flows with a divergence constraint 
(which is a highly nontrivial task!) [21, 41, 30]. 

The analysis in Section 2 has revealed three key issues that 
need to be addressed in designing a low Mach number flow 
computation scheme: 

1. The dynamic range problem associated with the asymp'- 
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totic pressure decomposition p = p~O~ + Mp~,~ + M2pl2~ and the 
fact that each of the p~ affects the leading order velocity field. 

2. The correct identification of singular and nonsingular 
terms in the flow equations as M --* 0. In particular, we argued 
that the " s t i f f '  part of the equations should be hyperbolic with 
signal speeds A = c(1 + o(1)) as M ~ 0, if acoustic wave 
propagation is to be represented accurately. 

3. The possibility of nonhomentropic flow, i.e., of variable 
densities. A particular consequence of large amplitude entropy 
fluctuations is that the speed of sound inherits these large ampli- 
tude variations. In addition, a numerical scheme for such appli- 
cations must involve a mechanism for advection of entropy 
(or density). 

We summarize in the following several earlier attempts at over- 
coming the numerical low Mach number problems and discuss 
these approaches in the light of items 1-3 above. 

Casulli and Greenspan [3] perform a characteristic analysis of 
the Euler equations and identify those terms that are responsible 
for introducing the large speed-of-sound contribution to the sig- 
nal speeds. They single out the pressure gradient in the momen- 
tum equation and the velocity divergence term in the energy 
equation in agreement with our asymptotic analysis. They then 
suggest building a semi-implicit discretization that treats only 
these terms implicitly, while handling the others explicitly. This 
approach allows them to face the issues 2 and 3 above (large 
signal speeds of the stiff part and variable densities), yet there is 
no pressure decomposition. Thus, their pressure variable must at 
the same time represent leading order thermodynamic effects and 
the small O(M'-) pressure fluctuations responsible for the diver- 
gence constraint as M ~ 0. As a consequence, their scheme does 
not automatically extend to zero Mach number. Patnaik et al. [4] 
extend a flux-corrected-transport (FCT) algorithm for compress- 
ible flows based on Casulli and Greenspan's ideas. Their results 
for acoustic wave propagation in a closed 1D-system exhibit 
strong damping when Courant numbers w.r.t, the sound speed 
larger than unity are used. This demonstrates the importance of 
our explicit linear acoustic predictor, in addition to the pressure 
decomposition, in obtaining very low dissipation for the long 
wave length'acoustics. 

Abarbanel et al. [6] argue, by providing some explicit exam- 
ples, that a successful splitting of the compressible flow equa- 
tions for small Mach numbers should involve split fluxes whose 
Jacobian matrices are simultaneously symmetrizable. Introduc- 
ing a suitable variable transformation (entropy variables), they 
first symmetrize the Euler equations and then decompose the 
resulting symmetric coefficient matrices in stiff and nonstiff 
symmetric components. The stiff parts are linear, so that the 
associated split steps can be solved efficiently by an implicit 
method. The splitting is also shown to be stable when a time 
step restriction based on the flow velocity (not on the speed of 
sound) isintroduced. Unfortunately, the approach draws heavily 
on the assumption that fluctuations of the speed of sound obey 
an estimate 

C D C ~ e  
=o(1)  as M---~0, (5.2) 

C~ 

where ca is a constant reference speed of sound. This is true 
only for homentropic flows and, as a consequence, the method 
is not applicable to variable density flows. In addition, the stiff 
parts of the split operators have incorrect signal speeds in 
the limit, so that an accurate representation of acoustic wave 
propagation cannot be expected. The dynamic range problem 
for the pressure is overcome, albeit under the assumption of 
homentropic flow. 

Gustafsson and co-workers [9] follow a similar route, but 
by using a different variable transformation for the symmetriza- 
tion, they obtain split fluxes that do have the correct signal 
speeds as M --~ 0. As regards the issues of variable density 
capacities and the dynamic range problem the same criticism 
as given above for Abarbanel et al. holds. 

Sesterhenn et al. [10] introduce a heuristic splitting that 
separates the pressure gradient in the momentum equation from 
the rest of the terms. The surprising result is that the split 
systems in a characteristic analysis turn out to have the signal 
speeds {u, yu, u} for the step involving convection and {0, 0, 
- ( 'y  - 1)u} for the split step involving the pressure gradient. 
Obviously, the stiffness of the system is gone, as the speed of 
sound does not appear anymore. Hence, one is tempted to just 
use an explicit discretization for any Mach number. The authors 
show that, even though the separate steps are nonstiff, an ex- 
plicit split step algorithm still suffers from a severe time step 
restriction. The splitting itself in this case introduces an instabil- 
ity that can be cured only by choosing sufficiently small time 
steps. This is in line with observations by Abarbanel et al. [6], 
who provide explicit examples demonstrating that this situation 
can easily occur for many hyperbolic systems. Sesterhenn et 

al. then discretize the pressure gradient contribution implicitly 
and downwind with respect to the flow velocity. This discretiza- 
tion is shown to be stabilizing. The approach yields promising 
results for steady flows, where the semi-implicit discretization 
allows large time steps and fast convergence. Yet, the signal 
speeds associated with the second step are incorrect and do not 
represent the acoustic signal speed. Hence, one may not expect 
accurate results for unsteady problems involving (long wave) 
acoustics. 

SIMPLE-type algorithms (SIMPLE [2]; SIMPLEC; see Noll 
[42]) in principle are semi-implicit discretizations of the com- 
pressible flow equations which can be tuned to survive the zero 
Mach number limit. By dividing the time update into an explicit 
part and an implicit part, where the first step includes the effects 
of the pressure at the old time level, while the second accounts 
for the pressure update, one has a pressure decomposition quite 
similar to the present multiple pressure approach without explic- 
itly saying so. One crucial ingredient is missing in these 
schemes, though, namely a separate scaling of these two pres- 
sure contributions: If the zero Mach number limit is to be 
achieved, then the explicit pressure terms must be scaled by a 
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suitable reference pressure P~ef, while the pressure correction 
must be scaled with p,cfu~: '~ Then, expressed in terms of our 
asymptotic analysis, the explicit pressure terms may be identi- 
fied with the homogeneous background pressure P0(t), while 
the pressure corrections will correspond to pa)(x, t) as M --> 0. 

The implicitly discretized terms of the SIMPLE-type 
schemes have the correct signal speeds as M ~ 0, so that 
unsteady acoustic effects can be described, albeit with consider- 
able dissipation as long as a suitable pressure scaling and special 
discretizations for acoustic effects are absent. 

Another crucial difference between the SIMPLE-type and 
the present scheme is that the pressure correction equation in 
the former is obtained by replacing density changes in the 
continuity equation with pressure (and entropy) changes using 
the equation of state. For homentropic flows this approach is 
for all practical purposes identical with one that uses the energy 
equation to this end. For variable density flows, however, the 
changes of density due to the advection of entropy are by orders 
of magnitude larger than those due to the pressure variation, where 
Extracting the correct information on pressure changes from 
the continuity equation then becomes an extremely subtle task. 
Also, an additional equation for, e.g., the temperature represent- 
ing the entropy fluctuations must be solved. We hope to have 
pointed out sufficiently clearly in the preceding sections that 
in a finite volume approach the natural equation for describing 
the advection of entropy is the continuity equation, while the 
energy equation automatically yields the divergence constraint 
and should be used to obtain the Poisson-type equation for the 
"incompressible pressure" p(21. 

The more recent SIMPLER version of the SIMPLE scheme where 
[2] is computationally advantageous in comparison with the 
pressure correction schemes, yet a step in the "wrong" direc- 
tion as regards a smooth approach to the zero Mach number 
limit. In this version, the implicit step uses not a pressure 
update, but the total pressure, thereby destroying the possibility 
of a suitable pressure rescaling for part of the scheme. As 
pointed out before, an algorithm that only knows one pressure 
variable will not be able to actually compute both compressible 
and truly incompressible flows due to the dynamic range prob- 
lem (see item 1 at the beginning of this subsection). 

Zienkiewicz et al. [8] propose an "all Mach number scheme" 
that is very similar to the SIMPLE-type algorithms with pres- 
sure correction but uses finite element type discretizations. 

Colella [30] describes recent efforts aimed at numerically 
solving the equations of zero Mach number combustion (see 
[18]) by extending higher order projection methods [43, 44] 
for incompressible flows (see also [21, 41]). These schemes and 
achieve higher order accuracy by employing Godunov-type 
upwind discretization ideas for describing convection of mass, 
momentum, and chemical species and sophisticated algorithms 
for the projection step. The use of Godunov-type discretizations, 
however, differs fundamentally from what is done in the present 
paper to solve the split System I from Section 3. We emphasize 
that in the references cited the asymptotic limit equations are 

solved rather than the full equations in a limit regime. Thus, 
e.g., acoustic effects are completely suppressed or computed 
by postprocessing as higher order corrections in the sense of 
Klainerman and Majda [13]. 

A P P E N D I X  I: HLLE-FLUXES FOR THE EXPLICIT 
CONVECTION STEP 

I. 1. Characteristic Analysis  

We write the auxiliary system I* from (3.8) as 

p, + m ,  = 0 

m + = 0  

e, + (u[e + 7r])x = 0, 

(I.1) 

and fiNL is considered given and fixed in the characteristic 
analysis of (I. 1) which shows that the system is strictly hyper- 
bolic with eigenvalues 

m 
A~ = u = - -  A, = u _+ c , .  (I.3) p '  

c2 rr - p  c;~ = + (I.4) 
p2E, ' 

provided that 

(i) p,rrp - 7rep p = 0 

(ii) per:,, - 7Lpm = 0 

(ii) p,, + Urre=O. 

In (I.4) the quantity E is the internal energy per unit mass, i.e., 

E 1 [  m 2] 
= -  e - M 2 -  = E ( p ,  p )  

p 2p 
(I.5) 

c2 = Ep - pip2 (I.6) 
E. 

is the unmodified (nondimensional) speed of sound of the gas. 
We note that conditions (i), (ii) are satisfied given the definition 
of rr in (1.2) and with the assumption that ~,L is considered 

m " )  

r: = PNL + M-p, (I.2) 
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fixed. In addition we emphasize that this analysis holds as stated 
for general equations of  state E = E(p ,  p). 

For the definition of the HLLE-fluxes we also need the left 
and right eigenvectors of  system (I.1) associated with the A%- 
characteristic, i.e., with pure convection: 

= 1 [ [ _ _ _ e + T r + M , . u 2 , _ M 2 u  ,1 )  1 o 
- c-.Ep \ p 

r o = 
U 

E + pEp + 

(I.7) 

1.2. H a r t e n - L a x - v a n  Leer -E in f e ld t  Fluxes  

System I*, i.e., (I.1), is equivalent to 

_u, + _fCu), = 0, ( i .8)  

where t! = (p, m, e),f_(-ff) = (m, mZ/p + p, (m/p)[e  + ~']). Here 
we describe how to construct numerical approximations, 
g(ul,  ur), of  the physical fluxes at the interfaces of  the numerical 
grid cells, given two adjacent states, ul, u ,  These are used in 
a standard fashion in a conservative discretization of the system 
of conservation laws in (I.8). 

Let f l  = f ( u l ) , f _ r  : g ( l g r )  be the exact fluxes associated with 
u,,  Ur, then the H a r t e n - L a x - v a n  Leer numerical flux is [25, 26] 

tion. We have used this fact by defining the relevant signal 
speeds for the numerical fluxes of  system I* as 

bl* = min((u - c ) , ,  ( u  - C)ROE, 0), 

br* = max((u + c)l, (u + C)~OE, 0), 
(I.11) 

where UROE, CRO E are obtained in the usual fashion as 

U r ~ ~ r -}- l, l l ~ l ~  l 
,,,o~ = ~Or + ~ ' (I.12) 

CROE = %/('Y -- 1)(HRoE -- M2U~oE/2), (I.13) 

H~V/-~p~ + Hl~--p~pt 
HROE = ~ +  ~ , (I.14) 

e + p  
H - (I.15) 

P 

Einfeldt [26] observes that the HLL scheme as described oper- 
ates quite dissipatively on contact discontinuities. He suggests 
an improvement that modifies the fluxes in (I.9) by an additional 
component proportional to the right eigenvector(s) associated 
with the u-characteristic. 

griLLE : griLL q_ TI(_/O . (U r __ L.//i))r0, (I. 16) 

where 

1 
gHLLtl.,I l,lr) -- - - { b ~ f i  - b~_r + btbr(ur - -  Ul)}, (I.9) 

t_l, br - bl 
br -- 61 

~7 - - -  ( I . 1 7 )  
2br 

where bl, br are approximations to the smallest and largest 
signal speeds associated with the Riemann Problem with initial 
data ul, u~. 

For the original gasdynamic system, Einfeldt suggests the 
choices for b~, br, 

bl = min(M,  AROE, 0), 

br = max(A{, A~OE, 0), 
(I.10) 

where Al~r are the speeds for left and right running sound waves, 
Afro E a r e  the corresponding Roe eigenvalues for _ul, _Ur (see, e.g., 
[28, 12]). The choice in (I.10) guarantees correct behavior 
with minimal dissipation for shock waves and, through the 
comparison with the smallest and largest characteristic speeds 
associated with u~, u_r, respectively, it has a built-in entropy- 
fix that inhibits unphysical entropy-violating expansion shocks. 

An important feature of  the HLL-approach is that for an 
appropriate choice of  the signal speeds one formally obtains a 
consistent upwind scheme. Small variations of  bl, br do not 
affect the performance of the scheme and its numerical dissipa- 

Einfeldt shows that the modified scheme in (I. 16) is equivalent 
to Roe 's  linearized solver except for a different entropy-fix. 

This concludes the discussion of the numerical fluxes for 
System I*. We have implemented a second-order version of 
the scheme by using a standard MUSCL-type approach as 
described, e.g., in [45, 11, 12, 46]. 

A P P E N D I X  II:  L E V E Q U E ' S  L A R G E  T I M E  S T E P  M E T H O D  

F O R  T H E  L I N E A R  A C O U S T I C  S Y S T E M  (3.16)  

Given (~,  p('), c2)~ ', we compute for each cell interface, j + 
~, the amplitudes of  left and right running acoustic pulse ampli- 
tudes, according to 

1( ) 
~0"?+I12 2 (m]+l -- mj) -i- l --(i) = (pj+, -,~)*)) , (II.1) 

C~+ 1/2 

where 

=2 l_tc2 =~ c~+,n = 2t ~+, + c~). (I1.2) 



236 R. KLEIN 

Then we distribute the acoustic perturbations over neighboring 
cells by 

j- 112 ,+1/h4+1/2 

&ii, = c w,;sa:_r: + 2 - - 
W,JCSffj ri . (11.3) 

i=j-I/M-l/? i=j+ I/? 

Here the 

(11.4) 

are the right eigenvector of the linearized acoustic system (3.16) 
representing right and left running acoustic waves and the 
weights w,$ are computed as follows: For a right-running acous- 
tic pulse from the cell interface with index i = ji + & compute 
its location x: after the time step as 

l= 
x,+ = xi + - c; At. M 

Then 

0, X+ < Xj-l/2 

+ wij = h (XT - Xj- 1121, Xj- I/2 s Xi’ < Xj+ I/2 

1, xj+ ,,I I x,? . 

Analogously, 

l= 
x; = xi - G c; At 

and 

c 0, xl’ > xj+ 112 

wij = - I & (xj+l/2 - xF)~ xj+l/2 z xt' ' x,-l/2 

(11.5) 

(11.6) 

(11.7) 

(11.8) 

119 Xj-l/2 z X,’ . 

This completes the description of the first-order algorithm that 
was employed for all the numerical examples of Section 4. For 
a higher order extension of the scheme and applications to 
general nonlinear systems, see [24]. 

APPENDIX ID. BOUNDARY CONDITIONS FOR THE 
THIRD TEST PROBLEM FROM (4.3) 

For the explicit convection step we employ the following 
standard approach: We introduce at both ends of the domain 
two dummy cells and, before applying the discrete solution 

operator, assign appropriate states to these cells, such that the 
explicit scheme automatically yields fluxes at the boundaries 
that are compatible with the desired boundary conditions. 

Left boundary. Density and velocity are prescribed at the left 
boundary, so that their exact values, (p,, u,)(t) = (p, u)(x = 
0, t), are known. Consider the 12th convective computational 
step to be completed and let the subscripts - 1,0 indicate the 
two dummy cells to the left of the computational domain, 
while the subscripts 1, 2, indicate the first two cells. Then we 
extrapolate the density and velocity profiles as 

(p, u,: = 2(p, u)r(t”) - (P. ~~199 
(p, up, = 2(p, u),(t”) - (p, 4Y9 

(III. 1) 

where the superscript o is defined in analogy with our notation 
of Section 3. The pressure is extrapolated using the values in 
cells 1, 2, by 

(aplax): = (p! - p$lAx 

pg = py - Ax(aplax);, ” (111.2) po, = py - 3 Ax (dpldx),. 

For the implicit step we introduce a gradient boundary condition 
for the second-order pressure 9’). The idea is that the explicit 
step will typically not guarantee exact compliance of the numer- 
ical solution with the prescribed boundary condition and we 
need to enforce an additional acceleration at x = 0 to make up 
for the difference. Thus we let 

(111.3) 

where the data used on the right-hand side are those obtained 
from the preceding explicit convection step. The gradient of 
the perturbation pressure at the left boundary is set to 

$ ($2) - p)l,r=o = - q (u,(t”+l) - ii,). (111.4) 

Then approximations p2’ at x0, x-, are computed in analogy 
with the formulas in (III.2)2. 

At the right boundary all quantities, except for the second- 
order pressure, are linearly extrapolated. For the second-order 
pressure we use a quadratic extrapolation formula based on the 
gridpoint values at Xim-, , x,,” and the additional constraint that 
F2’(L, t) = 0. This provides the necessary right boundary condi- 
tion for f12) at Xim+l which is the first dummy point outside of 
the computational domain. 
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